resonance theorem
- 网络共鸣定理
-
Resonance Theorem of Two Types of Non-linear Operators in Topological Vector Spaces
关于拓扑线性空间中两类非线性算子的共鸣定理
-
The Resonance Theorem and Operator Space in F ~ Spaces
F~空间中的共鸣定理与算子空间
-
A Universal Proposition about the Resonance Theorem for a Family of Additive Functionals on a Topological Group
关于拓扑群上加性泛函族共鸣定理的一个普遍性命题
-
The Resonance Theorem for a Family of - Convex Functionals on a - Normed Space
赋β-范空间上(λ,μ)-凸泛函族的共鸣定理
-
This paper proves that there is a corresponding resonance theorem on a type of non-linear fuctional - modulus in topological linear space .
证明了在拓扑线性空间中,对于一类非线性泛函&模数而言,也有相应的共鸣定理。
-
Analogues the bounded linear operator theorem , the Hahn-Banach theorem and the resonance theorem are established in sub-normed Z-linear space .
泛函分析学中的有界线性算子定理,Hahn-Banach定理以及共鸣定理都可以移植于次范整线性空间之中。
-
In this paper , We discuss some important theorems such as uniform boundness 、 open mapping 、 closed graph 、 semi boundedness resonance theorem in Menger & PN space .
本文给出了Menger&PN空间中的一致有界定理、开映象定理、闭图定理以及关于半有界的一条共鸣定理。
-
The resonance theorem for a family of α convex functionals on a β normed space is generalized . The condition concentric balls in the theorem is dropped to the balls which may be with different centres .
推广了赋β-范空间上α-凸泛函族的共鸣定理,将其中的同心球条件降低为一族不必同心的球。
-
In this paper , we give a resonance theorem for families of quasi-homogeneous operators taking values in locally bounded topological vector spaces . Moreover , we give a resonance theorem for families of quasi-homogeneous , quasi-convex operators from barrelled spaces to locally convex spaces .
本文给出了取值于局部有界拓扑向量空间的准齐性算子族的共鸣定理,进而给出了从桶形空间到一般局部凸空间的准齐性拟凸算子族的共鸣定理。